Warm up problems.

a. Find the decimal expressions for the fractions

1 2 3 4 5 6
v T T T T
What interesting things do you notice? -
Eanemb ‘Jw) Ankd 89 Foaistran |
b. Repeat the problem for the fractions
1 2 12
137 13"777713°

What is interesting about these answers?

Every fraction has a decimal representation. These representations either terminate (e.g.

g = 0.375) or or they do not terminate but are repeating (e.g.

% = (0.428571428571 ... = 0.428571, )

where the bar over the six block set of digits indicates that that block repeats indefinitely.

1. Perform the by hand, long divisions to calculate the decimal representations for Tlg
and -1% Use these examples to help explain why these fractions have repeating
decimals.

2. With these examples can you predict the “interesting things” that you observed in
warm up problem b.? Look at the long division for % Does this example confirm

your reasoning?

3. It turns out that % = 0.02439. Write out the long division that shows this and then
find (without dividing) the four other fractions whose repeating part has these five
digits in the same cyclic order.

4. As it turns out, if you divide 197 by 26, you get a quotient of 7 and a remainder of
15. How can you use this information to find the result when 2197 = 394 is divided
by 267 When 5 - 197 = 985 is divided by 267

T

Suppose that when you divide N by D, the quotient is () and the remainder is R.
What are the possible answers when you divide 2N by D? When 3N is divided by
D? When mN is divided by d7



6. In warm up problem b. you found that

10.

11,

12.

13.

1 2

— = 0.076923 d — =

13 T
The remainders encountered, in order, when performing the long divisions for these
results are displayed in the remainder wheels below:

0.153846.
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12 11

How can you predict the remainders for the % division from those for % division?
How does this situation relate to problems 4 and 57

How can you use the remainder wheels above to find the decimal expansions for, say
4 11
13 and ﬁ?

Explain why the remainders on the 1—15 wheel are the remainders when the numbers
109, 101, 102, 10%,... are divided by 13. What similar statement can you make about
the remainders on the other wheel?

Notice that if you take any two numbers from the ~1~1§ wheel, take their product, and
divide by 13, your remainder is another number on the wheel. However, this is not
the case for the Tzé wheel. Why?

Referring back to Problem 3., write the remainder wheel for %. From this find

the remainder wheels for % and %. Use this remainder wheels to find the decimal
expansions for % and %. You can check your answers with a calculator.

Notice that in each of Problems 6. and 8., the remainder wheels produced have no
numbers (e.g. remainders) in common. Why must this be the case? Given two
remainder wheels for a given denominator, what can be said in general about the
wheels?

Consider all of the possible remainder wheels for fractions with denominator 41. Will
the number 0 appear in one of these remainder wheels? Why or why not? Will each
of the numbers 1, 2, 3,...,40 appear in a division wheel for 417 How do you know?

From what we have learned in Problems 9. and 10., how many different remainder
wheels are there for 417



Repeating Decimals—Notes

Warm-up problems. It is well known that the decimal expansions of the six fractions
with denominator 7 can be obtained by cycling the digits of the repeating block. Is
there anything of this sort happening with the fractions in part b?

1. At each step of the division process we do a subtraction to obtain a remainder
between 1 and 12, then “bring down” 0 and divide the result by 13. Because
there are only a finite number of these remainders possible, eventually a re-
mainder must repeat and when that happens the division produces quotients
and remainders identical to those produced before.

2. Write out the long division work for % and % and compare the two. Notice that
at some point in the % division we produce a remainder of 5. From this point on
the process produces exactly the same results as those of the =5,— process. Thus
the repeating block for .5, has the same digits as those of the % block. The digits
occur in the same cyclic order, but the cycles start at different places because
the divisions for the two fractions start at different remainders.

3. The other fractions can be identified by paying attention to the remainders as
in the previous problem.

4. The given information about the division says that
197 =26 -7 + 15.

Hence
5-197 = 5(26-7+15) = 26(5- 7) + (5 - 15).

Division by 26 tells us how many “units” of size 26 can be pulled from the
number. The display here says that we can take out 57 = 35 groups of
26 out plus any additional groups we can extract from 5 .15 = 75. Because
75 = 2-26 + 23 we can pull two more 26s out of this part, and have 23 left over.
Therefore when we divide 5 - 197 by 26 we get a quotient of 5- 7+ 2 = 37 and a
remainder of 23.

5. From the given information we know N =D -Q + R, so
mN=m(D-Q+ R)=D-(mQ)+mR.

How many “units” of size D can we pull out? We will get at least mQ) from the
initial term. Because 0 < mR < m(D — 1), there could be anywhere between
0 and m — 1 units of size D in mR. Thus when we divide mN by D, we will
obtain a quotient

m@Q+kforsome0d<k<m-—1

and some remainder r, which will be the remainder when mR is divided by D.



10.

11.

12,

13.

This relates to Problems 4 and 5. At any stage in the division you produce a
remainder for the division to that point. When comparing the 11—3 division with
the 12—3 division, we are doubling the dividend (2 -1 = 2). In Problems 4 and
5 we saw how the remainder is affected when the dividend is multiplied by a
positive integer.

With the wheels, you can recreate the digits of the quotient pretty easily. How?

If you stop the division process after, say 4 steps, the process you will have
completed is the same as that you would do when dividing 10* by 13.

The key idea here is this:

suppose we have two integers, N1 and N, and that when these numbers
are divided by D the remainders are r; and 7 respectively. Then when
Nj - Ny is divided by D the remainder will be the same as that when r; - o
is divided by D.

Now suppose we take two numbers from the 1—15 wheel, say 9 and 12. The first
is the remainder when 102 is divided by 13, and the second the remainder the
108 is divided by 5. Thus the product the remainder when 9 - 12 is divided by
13 is 4, which is the same as the remainder when 102 - 102 is divided by 13. But
102 - 103 = 10° and the remainder for this division will be the sixth number on
the wheel, e.g. 4.

This does not work with the 1—23- wheel because the remainders here are those
obtained when numbers of the form 2-10* are divided by 13. The product of two
of these remainders will have the same remainder as a number (2-10%)(2-10™) =
4-10%+™ In particular this product does not give a number of the form 2 - 10™,
so we cannot expect the remainder to be in the wheel.

(What is really going on here? The remainders for the % wheel form a mul-
tiplicative group, which is actually a subgroup of the multiplicative group of
integers 1, 2, 3,---12. The elements of the other remainder wheel make a coset
of this subgroup, but not a group.)

More practice with finding other remainder wheels given the on for ﬁ, and again
Problems 4 and 5 are very useful.

If the same remainder appeared in different wheels, then when this point in the
division is reached in each wheel, the results will be identical and we will be
producing the same decimal digits and same subsequent cycle of remainders.

If we ever get a remainder of 0, then the division terminates, and this would
mean we do not have a repeating decimal.

40/5 = 8.



In these problems we have worked with fractions of the form E Wwhere p is an odd
prime. The phenomena seen here will appear for any such fraction. Similar things
happen for fractions of the form k/n where n is an odd integer not divisible by 5. The
cycle, remainder wheel and group theory ideas still emerge, but only among fractions
which are in lowest terms, e.g., with k relatively prime to n. This does not play out
well for fractions % if n is a multiple of 2 or 5.

This activity is based on the article “Fractions with Cycling Digit Patterns” by Dan
Kalman. This paper appeared in The College Mathematics Journal, Vol. 27, No. 2,
March 1996.



Repeating Decimals

Warm up problems.

a. Find the decimal expressions for the fractions

1 2 3 4 5 6
AN A AR A AR
What interesting things do you notice?
b. Repeat the problem for the fractions
12 12
13° 1377777137

What is interesting about these answers?

Every fraction has a decimal representation. These representations either terminate (e.g.
8 = 0.375) or or they do not terminate but are repeating (e.g.

-3— = 0.428571428571 ... = 0.428571, )

where the bar over the six block set of digits indicates that that block repeats indefinitely.

1.

Perform the by hand, long divisions to calculate the decimal representations for % and
1—25. Use these examples to help explain why these fractions have repeating decimals.

With these examples can you predict the “interesting things” that you observed in
warm up problem b.? Look at the long divisions for .l, Does this example confirm
your reasoning?

It turns out that ﬁ = (.02439. Write out the long division that shows this and then
find (without dividing) the four other fractions whose repeating part has these five
digits in the same cyclic order.

Consider the repeating decimals

7 5
13 13

Notice that the repeating block for the second decimal is obtained by taking the
leading 5 from the first block and moving it to the end of the repeating block. Now
repeat this process on the iéé decimal to get the decimal 0.846153. What fraction has
this decimal expansion? Repeat this process several more times and list the fractions
that correspond to the decimals produced.

0538461 and 0.3846T5. (1)



5.

10.

Another way to get from one decimal to the other in (1) is to multiply both side of
the equation 1—73- = (.538461 by 10 to get

10- i% = 10-0.538461 = 5.384615.

From this point how can you arrive at the second expansion in (1)?

. Note that when 70 = 7 - 10 is divided by 13, the remainder is 5. How does this

information fit into the last problem? Formulate a rule for predicting the fraction
obtained when the first digit of a repeating block is transferred to the end of the
block.

. In warm up problem b. you found that

1
— =0.076923 d
13 0.07692 an

The remainders encountered, in order, when performing the long divisions for these
results are displayed in the remainder wheels below:

% = 0.153846.

1 2
4 10 8 7
1
13
3 9 6 5
12 11

For each wheel, how are the decimals for fractions {5 with these numbers as numer-
ators related? How does the order of the remainders (reading clockwise) relate to
what you learned from problems 4, 5, 67 Formulate a rule for each wheel that takes
you from one number to the next on the wheel in the clockwise direction?

Formulate a simple rule that can be used to generate the 1—2- wheel from the —113 wheel.
What would the wheel for % look like? What about 737 Compare pairs of the
wheels. If two of these wheels have a number in common the how many numbers do
they have in common? Explain why this must be the case.

In problem 3. we noted that ;111 = 0.02439. Using the ideas developed above, write
the remainder wheel for %. How many entries are on this wheel?

How many different remainder wheels are there for fractions with denominator 417
Use the ideas developed above to find all of these wheels. (Note, if one wheel is just
a rotation of another wheel, then we will not consider them to be different. )



Repeating Decimals—Teacher’s Notes

Warm-up problems. It is well known that the decimal expansions of the six fractions with
denominator 7 can be obtained by cycling the digits of the repeating block. This is easier
to see if you list the fractions and decimals in the order %, —3.,:, %, 9,—, f17-, -? For the part b.
warm up students should notice that the 12 decimals can be split into two sets; in each
set, if the fractions are ordered in the right way, we will see that the digits in the repeating
block again cycle. On the later pages of this document are the fractions for denominator 7,
13, and 21. The last is provided as an example of the cycling digit phenomenon with a non-
prime denominator. Note that in this case we only consider the non-reducible fractions
with denominator 21. One reason is that fractions like %(1—5 = % “belongs” to a different

fraction set.

Some students might feel more confident with a calculator to help the through the individual
long division calculations or the check that the repeating blocks in their decimal expansions
are correct. However, I never allow a calculator with this activity. Rather, as students
(working in groups) complete calculations for certain fractions, I ask them to come to the
board and record their results. Students then compare board results with theirs and discuss
the results until all are sure that the calculations are correct.

1. At each step of the division process we do a subtraction to obtain a remainder between
1 and 12, then “bring down” 0 and divide the result by 13. Because there are only a
finite number of these remainders possible, eventually a remainder must repeat and
when that happens the division produces quotients and remainders identical to those
produced before.

This reasoning can be applied to any fraction—there are only finitely many remain-
ders possible in doing the long division to convert a fraction to a decimal. Because
there are only finitely many possibilities, these remainders must repeat at some point.
This will lead to a repeating block for the decimal. Note that if we ever get a remain-
der of 0, at some point in the division, then the decimal is terminating (for example
3 =0.375.)

8

2. Write out the long division work for 1 5 and 2 7 and compare the two. Notice that
at some point in the % division we produce a remamder of 5. From this point on
the process produces exactly the same results as those of the 2 2 process. Thus the
repeating block for 2 % has the same digits as those of the block. The digits occur
in the same cyclic order, but the cycles start at different pla.ces because the divisions
for the two fractions start at different remainders.

Students should note that the remainders that appear in these divisions are the
numerators in the family of fractions that belong to a cycle pattern for that fraction.
On a later page is an illustration of the long division for ng The six remainders are



in bold and these are the numerators of the fractions in the cycle group that contains
2

'i'é' .

. The other fractions can be identified by paying attention to the remainders as in the
previous problem. There are only 5 remainders in this case and these remainders are
the numerators of the five fractions with denominator 41 that are in a cycle family.

. This exercise leads to a “natural ordering” of the fractions in a family. A fraction
leads to the next fraction by taking the lead digit in a block and moving it to the
back of the block.

. The process that students should describe goes something like this:

T = 0.538461
13
Multiple by 10 to see 0
:— = 5.384615
This can be written as
13-5+45 5
13 _5+ﬁ-—5384615

Subtracting 5 leads to 5
— = 0.384615.
13

The numerator 5 is the remainder when 70 = 10 - 7 is divided by 13.

. Students should note that taking the leading digit of the repeating block and moving
it to the end of the block is equivalent to multiplying the fraction (or repeating
decimal) by 10, then dropping the integer part, that is, the part to the left of the
decimal. When the analogous fraction is multiplied by 10 and the whole number part
of the fraction dropped, the result is the fraction (less than one) that has repeating
decimal expansion with block equal to the block produced earlier.

. The next number, clockwise on the wheel, is found (as above) by multiplying the
current number by 10, then finding the remainder on division by 13. Note that the
two wheels have no numbers in common. This must be the case because the numbers
on the wheel are the remainders obtained in doing the fraction to decimal conversion.

. If these two remainder wheels shared a number, then the would have the same decimal
expansmns from these points, meaning they belong to the sa.rne cycle family. But
and 2 i3 belong to different cycle families. Note that the ﬁ wheel can be obtamed
from the 15 Wheel by multiplying each element in the latter wheel by 2, then taking
the remainder on division by 13.



9. The process to move around the wheel in this case is: multiply by 10, then take the
remainder on division by 41. This gives

1—10—18—0 16— 37— 1.

Thus the fractions in the cycle family with 4% are %, }l—f, 4—-?, and %.
10. There are a total of 8 cycle families for the fractions %, 321—, cen, j—‘l’. Each wheel has

five spokes, and the integers at the ends of the spokes are the integers 1, 2,...,40,
each appearing exactly once. To generate the other wheels, find a digit n that does
not appear in any wheel yet produced. Multiply the 4—11 wheel by n and take the
remainder on division by 41.

In these problems we have worked with fractions of the form % where p is an odd prime. The
phenomena seen here will appear for any such fraction. Similar things happen for fractions
of the form k/n where n is an odd integer not divisible by 5. The cycle, remainder wheel
and group theory ideas still emerge, but only among fractions which are in lowest terms,
e.g., with k relatively prime to n. This does not play out well for fractions ;’% if nis a
multiple of 2 or 5.

This activity is based on the article “Fractions with Cycling Digit Patterns” by Dan
Kalman. This paper appeared in The College Mathematics Journal, Vol. 27, No. 2,
March 1996.



7= 0.523809
% = 0.619047
% = 0.761904
% = 0.809523
-1-?- = 0.904761
;—2 = 0.952380
—1% = 0.538461
% = 0.615384
i% = 0.692307
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